首页> 外文OA文献 >Vacuum–ultraviolet absorption and fluorescence spectroscopy of CF2H2, CF2Cl2, and CF2Br2 in the range 8–22 eV
【2h】

Vacuum–ultraviolet absorption and fluorescence spectroscopy of CF2H2, CF2Cl2, and CF2Br2 in the range 8–22 eV

机译:CF2H2,CF2Cl2和CF2Br2在8-22 eV范围内的真空-紫外吸收和荧光光谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The vacuum-UV absorption and fluorescence spectroscopy of CF\(_2\)X\(_2\) (X=H,Cl,Br) in the range 190-690 nm is reported. Tunable vacuum-UV radiation in the range 8-22 eV from synchrotron sources at either Daresbury, UK or BESSY1, Germany is used to excite the titled molecules. Fluorescence excitation spectra, with undispersed detection of the fluorescence, were recorded at Daresbury with a resolution of 0.1 nm. VUV absorption spectra at a resolution of 0.08 nm, and dispersed emission spectra with an optical resolution of 8 nm were recorded at BESSY1. Action spectra, in which the VUV energy is scanned with detection of the fluorescence at a specific wavelength, were also recorded at BESSY1 with a resolution of 0.3 nm ; appearance energies for production of a particular emitting state of a fragment are then obtained. Using the single-bunch mode of BESSY1, lifetimes of all emitting states that fall in the range ca. 3-80 ns have been measured. The peaks in the VUV absorption spectra of CF\(_2\)X\(_2\) are assigned to Rydberg transitions. For CF\(_2\)H\(_2\) below 11 eV, there is good agreement between the absorption and the fluorescence excitation spectra, whereas above 11 eV and for the whole range 8-22 eV for CF\(_2\)Cl\(_2\) and CF\(_2\)Br\(_2\) there is little similarity. This suggests that photodissociation to emitting states of fragment species represent minor channels. In the range 8-15 eV, emission is due mainly to CF\(_2\) A\(^1\)B\(_1\) - X\(^1\)A\(_1\)1 and weakly to CFX A\(^1\)A” - X\(^1\)A’. These products form by photodissociation of Rydberg states of CF\(_2\)X\(_2\), and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. For CF\(_2\)H\(_2\) below 11.8 eV CF\(_2\) A\(^1\)B\(_1\) can only form with H\(_2\), whereas for CF\(_2\)Cl\(_2\) and CF\(_2\)Br\(_2\) it is not possible to say whether the other products are 2X or X\(_2\). For energies above ca. 15 eV, emission is due to diatomic fragments ; CF B \(^2\Delta\) and A \(^2\Sigma\)\(^+\), CCl A \(^2\Delta\), CH B \(^2\Sigma\)\(^-\) and A \(^2\Delta\), Cl\(_2\) and Br\(_2\) D’ 2 \(^3\Pi_g\), and possibly CBr A \(^2\Delta\). From their appearance energies, there is evidence that, with the exception of CF B \(^2\Delta\) / CF\(_2\)H\(_2\) where the ground state of HF must form , the excited state of CF, CCl or CH forms in association with three atoms. Our results yield no information whether the three bonds in CF\(_2\)X\(_2\)* break simultaneously or sequentially. We suggest that the anomalous behaviour of CF\(_2\)H\(_2\), in forming H-H or H-F bonds in unimolecular photofragmentation processes, relates to the small size of the hydrogen atom, and hence the unimportance of steric effects in the tightly-constrained transition state. In no cases is emission observed from excited states of either the CF\(_2\) X free radical or the parent molecular ion, CF\(_2\)X\(_2\)X2\(^+\) .
机译:报道了CF \(_ 2 \)X \(_ 2 \)(X = H,Cl,Br)在190-690 nm范围内的真空-紫外吸收和荧光光谱。来自英国达累斯伯里或德国BESSY1的同步加速器源在8-22 eV范围内可调的真空-UV辐射用于激发标题的分子。荧光激发光谱,具有未分散检测的荧光,以0.1 nm的分辨率记录在Daresbury。在BESSY1处记录了分辨率为0.08 nm的VUV吸收光谱和光学分辨率为8 nm的分散发射光谱。在BESSY1上以0.3 nm的分辨率记录了动作光谱,在该光谱中通过检测特定波长的荧光来扫描VUV能量;然后获得用于产生片段的特定发射态的外观能。使用BESSY1的单束模式,所有发射状态的寿命都落在ca范围内。已测量3-80 ns。 CF \(_ 2 \)X \(_ 2 \)的VUV吸收光谱中的峰分配给Rydberg跃迁。对于低于11 eV的CF \(_ 2 \)H \(_ 2 \),吸收和荧光激发光谱之间具有良好的一致性,而高于11 eV且CF \(_ 2 \)的整个范围为8-22 eV Cl \(_ 2 \)和CF \(_ 2 \)Br \(_ 2 \)几乎没有相似之处。这表明光解离为碎片物质的发射状态代表较小的通道。在8-15 eV范围内,发射主要是由于CF \(_ 2 \)A\(^ 1 \)B \(_ 1 \)-X\(^ 1 \)A \(_ 1 \)1和弱到CFXA\(^ 1 \)A”-X\(^ 1 \)A'。这些产物通过CF \(_ 2 \)X \(_ 2 \)的Rydberg态光解形成,因此其产生的阈值与母体分子的Rydberg态的能量有关。对于CF \(_ 2 \)H \(_ 2 \)低于11.8 eV CF \(_ 2 \)A\(^ 1 \)B \(_ 1 \)只能与H \(_ 2 \)形成,而CF \(_ 2 \)Cl \(_ 2 \)和CF \(_ 2 \)Br \(_ 2 \)无法确定其他乘积是2X还是X \(_ 2 \)。对于高于ca的能量。 15 eV,发射是由于双原子碎片; CF B \(^ 2 \ Delta \)和A \(^ 2 \ Sigma \)\(^ + \),CCl A \(^ 2 \ Delta \),CH B \(^ 2 \ Sigma \)\( ^-\)和A \(^ 2 \ Delta \),Cl \(_ 2 \)和Br \(_ 2 \)D'2 \(^ 3 \ Pi_g \),可能还有CBr A \(^ 2 \ Delta \)。从它们的外观能量来看,有证据表明,除了CF B \(^ 2 \ Delta \)/ CF \(_ 2 \)H \(_ 2 \)之外,HF的基态必须形成, CF,CCl或CH与三个原子结合形成。我们的结果无法得出CF \(_ 2 \)X \(_ 2 \)*中的三个键是同时断裂还是依次断裂的信息。我们建议,CF \(_ 2 \)H \(_ 2 \)在单分子光碎裂过程中形成HH或HF键的异常行为与氢原子的尺寸小有关,因此在空间中不重要的空间效应严格约束的过渡状态。在任何情况下,都不会从CF \(_ 2 \)X自由基或母体分子离子CF \(_ 2 \)X \(_ 2 \)X2 \(^ + \)的激发态观察到发射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号